\(\int (d \sin (e+f x))^n (a+a \sin (e+f x))^m \, dx\) [138]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 107 \[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^m \, dx=-\frac {2^{\frac {1}{2}+m} \operatorname {AppellF1}\left (\frac {1}{2},-n,\frac {1}{2}-m,\frac {3}{2},1-\sin (e+f x),\frac {1}{2} (1-\sin (e+f x))\right ) \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n (1+\sin (e+f x))^{-\frac {1}{2}-m} (a+a \sin (e+f x))^m}{f} \]

[Out]

-2^(1/2+m)*AppellF1(1/2,-n,1/2-m,3/2,1-sin(f*x+e),1/2-1/2*sin(f*x+e))*cos(f*x+e)*(d*sin(f*x+e))^n*(1+sin(f*x+e
))^(-1/2-m)*(a+a*sin(f*x+e))^m/f/(sin(f*x+e)^n)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2866, 2865, 2864, 138} \[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^m \, dx=-\frac {2^{m+\frac {1}{2}} \cos (e+f x) (\sin (e+f x)+1)^{-m-\frac {1}{2}} \sin ^{-n}(e+f x) (a \sin (e+f x)+a)^m (d \sin (e+f x))^n \operatorname {AppellF1}\left (\frac {1}{2},-n,\frac {1}{2}-m,\frac {3}{2},1-\sin (e+f x),\frac {1}{2} (1-\sin (e+f x))\right )}{f} \]

[In]

Int[(d*Sin[e + f*x])^n*(a + a*Sin[e + f*x])^m,x]

[Out]

-((2^(1/2 + m)*AppellF1[1/2, -n, 1/2 - m, 3/2, 1 - Sin[e + f*x], (1 - Sin[e + f*x])/2]*Cos[e + f*x]*(d*Sin[e +
 f*x])^n*(1 + Sin[e + f*x])^(-1/2 - m)*(a + a*Sin[e + f*x])^m)/(f*Sin[e + f*x]^n))

Rule 138

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[c^n*e^p*((b*x)^(m +
 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rule 2864

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(-b)*(
d/b)^n*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])), Subst[Int[(a - x)^n*((2*a - x)^(m
 - 1/2)/Sqrt[x]), x], x, a - b*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !
IntegerQ[m] && GtQ[a, 0] && GtQ[d/b, 0]

Rule 2865

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(d/b)
^IntPart[n]*((d*Sin[e + f*x])^FracPart[n]/(b*Sin[e + f*x])^FracPart[n]), Int[(a + b*Sin[e + f*x])^m*(b*Sin[e +
 f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] && GtQ[a, 0] &&  !Gt
Q[d/b, 0]

Rule 2866

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[a^Int
Part[m]*((a + b*Sin[e + f*x])^FracPart[m]/(1 + (b/a)*Sin[e + f*x])^FracPart[m]), Int[(1 + (b/a)*Sin[e + f*x])^
m*(d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rubi steps \begin{align*} \text {integral}& = \left ((1+\sin (e+f x))^{-m} (a+a \sin (e+f x))^m\right ) \int (d \sin (e+f x))^n (1+\sin (e+f x))^m \, dx \\ & = \left (\sin ^{-n}(e+f x) (d \sin (e+f x))^n (1+\sin (e+f x))^{-m} (a+a \sin (e+f x))^m\right ) \int \sin ^n(e+f x) (1+\sin (e+f x))^m \, dx \\ & = -\frac {\left (\cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n (1+\sin (e+f x))^{-\frac {1}{2}-m} (a+a \sin (e+f x))^m\right ) \text {Subst}\left (\int \frac {(1-x)^n (2-x)^{-\frac {1}{2}+m}}{\sqrt {x}} \, dx,x,1-\sin (e+f x)\right )}{f \sqrt {1-\sin (e+f x)}} \\ & = -\frac {2^{\frac {1}{2}+m} \operatorname {AppellF1}\left (\frac {1}{2},-n,\frac {1}{2}-m,\frac {3}{2},1-\sin (e+f x),\frac {1}{2} (1-\sin (e+f x))\right ) \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n (1+\sin (e+f x))^{-\frac {1}{2}-m} (a+a \sin (e+f x))^m}{f} \\ \end{align*}

Mathematica [F]

\[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^m \, dx=\int (d \sin (e+f x))^n (a+a \sin (e+f x))^m \, dx \]

[In]

Integrate[(d*Sin[e + f*x])^n*(a + a*Sin[e + f*x])^m,x]

[Out]

Integrate[(d*Sin[e + f*x])^n*(a + a*Sin[e + f*x])^m, x]

Maple [F]

\[\int \left (d \sin \left (f x +e \right )\right )^{n} \left (a +a \sin \left (f x +e \right )\right )^{m}d x\]

[In]

int((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^m,x)

[Out]

int((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^m,x)

Fricas [F]

\[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^m \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{m} \left (d \sin \left (f x + e\right )\right )^{n} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^m,x, algorithm="fricas")

[Out]

integral((a*sin(f*x + e) + a)^m*(d*sin(f*x + e))^n, x)

Sympy [F]

\[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^m \, dx=\int \left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{m} \left (d \sin {\left (e + f x \right )}\right )^{n}\, dx \]

[In]

integrate((d*sin(f*x+e))**n*(a+a*sin(f*x+e))**m,x)

[Out]

Integral((a*(sin(e + f*x) + 1))**m*(d*sin(e + f*x))**n, x)

Maxima [F]

\[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^m \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{m} \left (d \sin \left (f x + e\right )\right )^{n} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^m,x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^m*(d*sin(f*x + e))^n, x)

Giac [F]

\[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^m \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{m} \left (d \sin \left (f x + e\right )\right )^{n} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^m,x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^m*(d*sin(f*x + e))^n, x)

Mupad [F(-1)]

Timed out. \[ \int (d \sin (e+f x))^n (a+a \sin (e+f x))^m \, dx=\int {\left (d\,\sin \left (e+f\,x\right )\right )}^n\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m \,d x \]

[In]

int((d*sin(e + f*x))^n*(a + a*sin(e + f*x))^m,x)

[Out]

int((d*sin(e + f*x))^n*(a + a*sin(e + f*x))^m, x)